
Aurora Vision Library Aurora Vision Library 55.6.6

Technical IssuesTechnical Issues

Created: 9/25/2025

Product version: 5.6.1.79554

adaptive-vision.com

Table of content:

Interfacing with Other Libraries

Loading Aurora Vision Studio Files (AVDATA)

Working with GenICam GenTL Devices

Processing Images in Worker Thread

Troubleshooting

Memory Leak Detection in Microsoft Visual Studio

ATL Data Types Visualizers

Optimizing Image Analysis for Speed

Deep Learning Training API

https://www.adaptive-vision.com

Interfacing with Other LibrariesInterfacing with Other Libraries

Aurora Vision Library contains the avl::Image class which represents an image. This article describes how
to create an avl::Image object with raw data acquired from cameras, and how to convert it to image
structures specific to other libraries.

Aurora Vision Library provides a set of sample converters. To use it in your program you should include a
specific header file which is available in Aurora Vision Library include directory (e.g.
AVLConverters/AVL_OpenCV.h). The list below presents all the available converters:

Euresys

MFC

MvAcquire

OpenCV

Pylon

QT

SynView

An example of using MFC converters can be found in the Aurora Vision Library directory in My Documents
(Examples\MFC Examples). Below is shown also an OpenCV converter example.

Example: Converting Between avl::Image and OpenCV MatExample: Converting Between avl::Image and OpenCV Mat

It is also possible to convert avl::Image to image structures from common libraries. The example code
snippets below show how to convert an avl::Image object to other structures.

#include <opencv2/highgui/highgui.hpp>

#include <AVLConverters/AVL_OpenCV.h>

#include <AVL.h>

avl::Image inputImage, processedImage;

cv::Mat cvImage;

int thresholdValue, rotateAngle;

//image processing

void ProcessImage()

{

 avl::Image image1;

 avl::ThresholdImage(inputImage, atl::NIL, (float)thresholdValue, atl::NIL, 0.0, image1);

 avl::RotateImage(image1, (float)rotateAngle, avl::RotationSizeMode::Fit,

 avl::InterpolationMethod::Bilinear, false, processedImage);

}

// callback

void on_trackbar(int, void*)

{

 ProcessImage();

 avl::AvlImageToCVMat_Linked(processedImage, cvImage);

 cv::imshow("CV Result Window", cvImage);

}

int main(void)

{

 // Load AVL image

 avl::Image monoImage, rgbImage;

 avl::TestImage(avl::TestImageId::Lena, rgbImage, monoImage);

 avl::DownsampleImage(monoImage, 1, inputImage);

 thresholdValue = 128;

 rotateAngle = 0;

 // Create OpenCV Gui

 cv::namedWindow("Settings Window", 1);

 cv::resizeWindow("Settings Window", 300, 80);

 cv::createTrackbar("Threshold", "Settings Window", &thresholdValue, 255, on_trackbar);

 cv::createTrackbar("Rotate", "Settings Window", &rotateAngle, 360, on_trackbar);

 // set trackbar

 on_trackbar(0, 0);

 cv::waitKey(0);

 return 0;

}

Example: avl::Image from pointer to image dataExample: avl::Image from pointer to image data

It is also possible to create an avl::Image object using a pointer to image data, without copying memory
blocks. This, however, requires compatible memory representations of images and proper information about
the image being created has to be provided.

The constructor shown below should be used for this operation:

Image::Image(int width, int height, int pitch, PlainType::Type type, int depth, void* data,

 atl::Optional< const avl::Region& > inRoi = atl::NIL);

Please note that all of the XxxToXxx_Linked functions do not copy data and the user has to take care of
freeing such data. See also the usage example in OpenCV converter above. Functions AvlImageToCVMat_Linked
and CVMatToAvlImage_Linked do not copy data.

Displaying Images Directly on WinAPI/MFC Device Context (HDC)Displaying Images Directly on WinAPI/MFC Device Context (HDC)

For convenience, there is also a function that directly displays an image on a WinAPI device context
(HDC). This function is defined in the header "AVLConverters/AVL_Winapi.h" as:

void DisplayImageHDC(HDC inHdc, avl::Image& inImage, float inZoomX = 1.0, float inZoomY = 1.0);

For sample program showing how to use this function, please refer to the official example in the "06
WinAPI tutorial" directory.

https://docs.adaptive-vision.com/5.6/avl/datatypes/Image.html#MemoryRepresentation

Loading Aurora Vision Studio Files (AVDATA)Loading Aurora Vision Studio Files (AVDATA)

Aurora Vision Studio has its own format for storing arbitrary objects - the AVDATA format. It is used for
storing elements of the program (paths, regions etc.) automatically, or manually when using "Export to
AVDATA file" option or the SaveObjectSaveObject and LoadObjectLoadObject generic filters.

Aurora Vision Library can load and save several types of objects in AVDATA format. This is done using
dedicated functions, two corresponding for each supported type. The functions start with LoadLoad and SaveSave
and accept two parameters - a filename and an object reference - for loading or saving.

 void LoadRegion

 (

 const File& inFilename, //:Name of the source file

 Region& outRegion //:Deserialized output Region

);

 void SaveRegion

 (

 const Region& inRegion, //:Region to be serialized

 const File& inFilename //:Name of the target file

);

The supported types include:

Region

Profile

Histogram

SpatialMap

EdgeModel

GrayModel

OcrMlpModel

OcrSvmModel

Image*

Because the LoadImageLoadImage function is a more general mechanism for saving and loading images into common file
formats (like BMP, JPG or PNG), the functions for loading and saving avl::Image as AVDATA are different:

 void LoadImageObject

 (

 const File& inFilename, //:Name of the source file

 Image& outImage //:Deserialized output Image

);

 void SaveImageObject

 (

 const Image& inImage, //:Image to be serialized

 const File& inFilename //:Name of the target file

)

Simple types like IntegerInteger, RealReal or StringString can be stored in files in textual form - by setting
inStreamModeinStreamMode to Text when using SaveObjectSaveObject - this can be read by formatted input output in C/C++ (for
example using functions from the scanf family).

Working with GenICam GenTL DevicesWorking with GenICam GenTL Devices

IntroductionIntroduction

GenICam GenTL is a standard that defines a software interface encapsulating a transport technology and
that allows applications to communicate with general vision devices without prior knowledge of its
communication protocol. GenTL supporting application (a GenTL consumer) is able to load a third party
dynamic link library (a GenTL provider) that is a kind of a "driver" for a vision device. GenICam standard
allows to overcome differences with communication protocols and technologies, and allows to handle
different devices in same common way. However application still needs to be aware of differences in device
capabilities and be prepared to cooperate with specific device class or device model.

Aurora Vision Library contains a built-in GenTL subsystem that helps and simplifies usage of a GenTL
device in vision application. AVL GenTL subsystem helps in loading provider libraries, enumerating GenTL
infrastructure, managing acquisition engine and frame buffers, converting image formats and implements
GenAPI interface.

In order to be able to use a GenTL provider it needs to be properly registered (installed) in local
system. Usually this task is performed by an installer supplied by a device vendor. Please note that a
32bit application requires a 32 bit provider library and a 64 bit application requires respectively a 64
bit provider library. A registered GenTL provider is characterized by a file with ".cti" extension. Path
to cti library containing folder is stored in an environmental variable named "GENICAM_GENTL32_PATH"
("GENICAM_GENTL64_PATH" for 64 bit providers).

Basic UsageBasic Usage

Functions designed for GenTL support can be found in GenTL and GenApi categories. A basic application will
first use a GenTL_OpenDevice function to open a device instance (to establish the connection) and to
request a handle for further operations on the device. This handle can be than used with GenApi functions
to access device specific configuration and manage them. When the device identifiers are not fully known,
or can dynamically change at runtime a GenTL_FindDevices function can be first used to enumerate available
GenTL devices.

To start streaming video out of configured device a GenTL_StartAcquisition function must be executed.
After this sequentially upcoming images can be retrieved with GenTL_ReceiveImage or GenTL_TryReceiveImage
functions. Images will be stored in an input FIFO queue. Not retrieved images (on queue overflow) will be
dropped starting from the oldest one. To stop image acquisition a GenTL_StopAcquisition function should be
called. Image acquisition can be stopped and than started again multiple times for same device with
eventual configuration change in between (some parameters can be locked for time of image streaming).

To release the device instance its handle need to be closed with GenTL_CloseHandle function.

Advanced UsageAdvanced Usage

When more information need to be known about GenTL environment its structure can be explored using
GenTL_EnumLibraries, GenTL_GetLibraryDescriptor, GenTL_EnumLibraryInterfaces, GenTL_GetInterfaceDescriptor
functions.

When extended information or configuration, specific for GenTL provider or transport technology need to be
accessed, following functions can be considered: GenTL_OpenLibrarySystemModuleSettings,
GenTL_OpenInterfaceModuleSettings, GenTL_OpenDeviceModuleSettings, GenTL_OpenDeviceStreamModuleSettings.

Additional RequirementsAdditional Requirements

When using GenTL subsystem of Aurora Vision Library a "Genicam_Kit.dll" file is required to be in range of
application. This file (selected for 32/64 bit) can be found in Aurora Vision Library SDK "bin" directory.

https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenApi/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_OpenDevice.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenApi/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_FindDevices.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_StartAcquisition.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_ReceiveImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_TryReceiveImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_StopAcquisition.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_CloseHandle.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_EnumLibraries.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_GetLibraryDescriptor.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_EnumLibraryInterfaces.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_GetInterfaceDescriptor.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_OpenLibrarySystemModuleSettings.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_OpenInterfaceModuleSettings.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_OpenDeviceModuleSettings.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_OpenDeviceStreamModuleSettings.html

Processing Images in Worker ThreadProcessing Images in Worker Thread

Introduction to the ProblemIntroduction to the Problem

Aurora Vision Library is a C++ library, that is designed for efficient image processing in C++
applications. A typical application uses a single primary thread for the user interface and can optionally
use additional worker threads for data processing without freezing the main window of the application.
Images processing can be a time-consuming task, so performing it in a separate worker thread is
recommended, especially for processing performed in continuous mode.

Processing images in a worker thread is asynchronous and it means that accessing the resources by the
worker thread and the main thread has to be coordinated. Otherwise, both threads could access the same
resource at the same time, what would lead to unpredictable data corruption. The typical resource that has
to be protected to be thread-safe is the image buffer. Typically, the worker thread of the vision
application has a loop. In this loop it grabs images from a camera and does some kind of processing.
Images are stored in memory of a buffer as avl::Image data. The main thread (UI thread) presents the
results of the processing and/or images from the camera. It has to be ensured that the images are not read
by the UI thread and processed by the worker thread at the same time.

Please note that the GUI controls should never be accessed directly from the worker thread. To display the
results of the worker thread processing in the GUI, a resource access control has to be used.

Example Application and Image Buffer SynchronizationExample Application and Image Buffer Synchronization

This article does not present the rules of multithreaded programming. It only focuses on the most typical
aspects of it, that can be met when writing applications with Aurora Vision Library. An example
application that uses the main thread and the worker thread can be found among the examples distributed
with Aurora Vision Library. It is called MFC Simple Streaming and the easiest way to open it is by opening
Examples directory of Aurora Vision Library from the Start Menu. The application is located in 03
GigEVision tutorial subdirectory. It is a good template for other vision applications processing images in
a separate thread. It is written using MFC, but the basics of multithreading stay the same for all other
technologies.

There are many techniques of synchronization of a shared resources access in a multithreading environment.
Each of them is good as long as it protects the resources in all states that the application can be in and
as long as it properly handles thrown exceptions, application closing etc.

In the example application, the main form of the application has a private field called m_videoWorker that
represents the worker thread:

class ExampleDlg : public CDialog

{

private:

 (...)

 GigEVideoWorker m_videoWorkerGigEVideoWorker m_videoWorker;

 (...)

}

The GigEVideoWorker class contains the image buffer:

class GigEVideoWorker

{

 (...)

private:

 avl::Image m_imageBufferavl::Image m_imageBuffer;

 (...)

}

This is the image buffer that contains the image received from the camera that needs to be protected from
parallel access from worker thread and from the main thread that displays the image in the main form. The
access synchronization is internally achieved using critical section and EnterCriticalSection and
LeaveCriticalSection functions of the Windows operating system. When one thread calls the
GigEVideoWorker::LockResults() function, it enters the critical section and no other thread can access the
image buffer until the thread that got the lock calls GigEVideoWorker::UnlockResults(). When one thread
enters the critical section, other threads that try to enter the critical section will be suspended
(blocked) until the one leaves the critical section.

Using functions like GigEVideoWorker::LockResults() and GigEVideoWorker::UnlockResults() is a good choice
for protecting the image buffer from accessing by multiple threads, but what if due to an error in the
code the resource is locked but never unlocked? It can happen for example in a situation when an exception
is thrown inside the critical section and the code lacks the try/catch statement in the function that
locks and should unlock the resource. In the example application this problem has been resolved using the
RAII programming idiom. RAII stands for Resource Acquisition Is Initialization and in short it means that
the resource is acquired by creating the synchronization object and is released by destroying it. In the
example application being described here, there is the class called VideoWorkerResultsGuard. It
exclusively calls the previously mentioned GigEVideoWorker::LockResults() and
GigEVideoWorker::UnlockResults() functions in constructor and destructor. The instance of this

VideoWorkerResultsGuard class is the synchronization object. The code of the class is listed below.

class VideoWorkerResultsGuard

{

private:

 GigEVideoWorker& m_object;

 VideoWorkerResultsGuard(const VideoWorkerResultsGuard&); // = delete

public:

 explicit VideoWorkerResultsGuard(GigEVideoWorker& object)

 : m_object(object)

 {

 m_object.LockResults();m_object.LockResults();

 }

 ~VideoWorkerResultsGuard()

 {

 m_object.UnlockResults();m_object.UnlockResults();

 }

};

It can be easily seen that when the object of VideoWorkerResultsGuard is created, the thread that creates
it calls the LockResults() function and by that it enters the critical section protecting the image
buffer. When the object is destroyed, the thread leaves the critical section. Please note that the
destructor of every object is automatically called in C++ when the automatic variable goes out of scope.
It also covers the cases, when the variable goes out of scope because of the exception thrown from within
of the critical section. Using RAII pattern allows programmer to easily synchronize the access to shared
resources from multiple threads. When a thread needs to access a shared image buffer, it has to create the
VideoWorkerResultsGuard object and destroy it (or let it be destroyed automatically when the object goes
out of scope) when the access to the image buffer is no longer needed. The example usage of this
synchronization looks as follows:

// Retrieve the results under lock.

{

 VideoWorkerResultsGuard guard(m_videoWorker);VideoWorkerResultsGuard guard(m_videoWorker);

 (...)

 avl::AVLImageToCImage(m_videoWorker.GetLastResultData()m_videoWorker.GetLastResultData(), width, height, false, m_lastImage);

 (...)

}

The method GetLastResultData() returns the reference to the shared image buffer. It can be safely used
thanks to the usage of VideoWorkerResultsGuard object.

Notifications about Image Ready to DisplayNotifications about Image Ready to Display

Another issue that needs to be considered in a typical application that processes images and uses a worker
thread is notifying the main thread that the image processed by the worker thread is ready to display.
Such notifications can be implemented in several ways. The one that has been used in the example
application is using system function PostMessage(). When the worker thread has the image ready for
presentation, it copies it to the m_lastResultData buffer (this is the protected one) and posts the
notification message to the main window of the application:

//

// TODO: Compute the result data and put them in the shared buffer (just copy the source image).

//

m_lastResultData = m_imageBuffer;

// Send notification message

if (PostMessage(m_hNotificationWindow, m_notificationMessage, 0, NULL)PostMessage(m_hNotificationWindow, m_notificationMessage, 0, NULL))

{

 m_lastResultProcessed = false;m_lastResultProcessed = false;

}

The message is received by the main (UI) thread. Once it's received, the main thread acquires the access
to the shared image buffer by creating the VideoWorkerResultsGuard object. Then, the image can be safely
displayed.

The worker thread has a flag called m_lastResultProcessed. The flag set to false indicates that the
notification about image ready to display had been posted to the main thread but the main thread has not
processed (displayed) the image yet. The flag is set to false just after posting the notification message.
The main thread sets the flag back to true using NotificationGiveFeedback() function:

void GigEVideoWorker::NotificationGiveFeedback(void)

{

 VideoWorkerResultsGuard guard(*this);

 m_lastResultProcessed = true;

}

Once the worker thread has sent the notification message, it can acquire and perform the next frame from
the camera, but there's no point in sending the next notification until the previous is performed by the
UI thread. Sending the new notifications without performing the old ones could lead to cumulating them in
the messages queue of the main window. This is why the worker thread of the example application checks if
the previous notification message has been performed and sends the next one only if the processing of the
previous is finished:

if (m_lastResultProcessedm_lastResultProcessed && NULL != m_hNotificationWindow)

{

 // Create the result in shared buffers under lock.

 VideoWorkerResultsGuard guard(*this);

 (...)

}

Please note that the flag is also protected by the VideoWorkerResultsGuard synchronization object, so the
main thread cannot set it to true in the moment directly after the worker thread posted the notification
message.

Issues of MultithreadingIssues of Multithreading

There are two primary issues to consider when using worker thread(s). The first one is destroying data by
unsynchronized access from multiple threads and the second one is a deadlock that can appear when there
are two (or more) resources to be synchronized.

Securing data integrity by the thread synchronization mechanisms has been shortly described in this
article and is implemented in the example application distributed with Aurora Vision Library. As a rule of
a thumb, please assume that every image that can be accessed from more then one thread should be protected
by some kind of synchronization. We recommend the standard C++ RAII pattern as an easy to use and secure
solution.

The example application described in this article contains only one resource 3 a critical section
represented by the VideoWorkerResultsGuard class, but of course there may exist some applications where
there is more then one resource to share. In such cases, the synchronization of the threads has to be
implemented very carefully because there is a danger of deadlock that can be a result of bad
implementation. If your application freezes (stops responding) and you have more then one synchronized
resource, please review the synchronization code.

TroubleshootingTroubleshooting

This article describes the most common problems that might appear when building and executing programs
that use Aurora Vision Library.

Problems with BuildingProblems with Building

error LNK2019: unresolved external symbol _LoadImageA referenced in functionerror LNK2019: unresolved external symbol _LoadImageA referenced in function
error C2039: 'LoadImageA' : is not a member of 'avl'error C2039: 'LoadImageA' : is not a member of 'avl'

The problem is related to including the "windows.h" file. It defines a macro called LoadImage, which has
the same name as one of the functions of Aurora Vision Library. Solution:

Don't include both "windows.h" and "AVL.h" in a single compilation unit (cpp file).

Use #undef LoadImage after including "windows.h".

error LNK1123: failure during conversion to COFF: file invalid or corrupterror LNK1123: failure during conversion to COFF: file invalid or corrupt

If you encounter this problem, just disable the incremental linking (properties of the project |
Configuration Properties | Linker | General | Enable Incremental Linking, set to No (/INCREMENTAL:NO)).
This is a known issue of VS2010 and more information can be found on the Internet. Installing VS2010
Service Pack 1 is an alternative solution.

Exceptions Thrown in Run TimeExceptions Thrown in Run Time

Exception from the Exception from the avlavl namespace is thrown namespace is thrown

Aurora Vision Library uses exceptions to report errors in the run-time. All the exceptions are defined in
avl namespace and derive from avl::Error. To solve the problem, add a try/catch statement and catch all
avl::Error exceptions (or only selected derived type). Every avl::Error object has the Message() method
which should provide you more detailed information about the problem. Remember that a good programming
practice is catching C++ exceptions by a const reference.

 try

 {

 // your code here

 }

 catch (const atl::Error& er)

 {

 cout << er.Message();

 }

High CPU Usage When Running AVL Based Image ProcessingHigh CPU Usage When Running AVL Based Image Processing

When working with some AVL image processing functions it is possible that the reported CPU usage can reach
50~100% across all CPU cores even in situations when the actual workload does not justify that hight CPU
utilization. This behavior is a side effect of a parallel processing back-end worker threads actively
waiting for the next task. Although the CPU utilization is reported to be high those worker threads will
not prevent other task to be executed when needed, so this behavior should not be a problem in most
situations.

For situations when it is not desired this behavior can be changed (e.g. when profiling the application,
performance testing or in any situation, when high CPU usage interfere with other system). To block the
worker threads from idling for extended period of time the environment variable OMP_WAIT_POLICY must be
set to the value PASSIVE, before the application is started:

 set OMP_WAIT_POLICY=PASSIVE

This variable is checked when the DLLs are loaded, so setting it from the application code might not be
effective.

Memory Leak Detection in Microsoft Visual StudioMemory Leak Detection in Microsoft Visual Studio

When creating applications using Aurora Vision Library in Microsoft Visual Studio, it may be desirable to
enable automated memory leak detection possible in Debug builds. The details of using this feature is
described here: Finding Memory Leaks Using the CRT Library.

Some project types, notably MFC (Microsoft Foundation Classes) Windows application projects, have this
mechanism enabled by default.

False Positives of Memory Leaks in AVL.dllFalse Positives of Memory Leaks in AVL.dll

Using a default configuration, as described in Project Configuration can lead to false positives of memory
leaks, which come from the AVL.dll library. The output of a finished program can look similar to the
following:

(...)

The thread 'Win32 Thread' (0x898) has exited with code 0 (0x0).

The thread 'Win32 Thread' (0x168c) has exited with code 0 (0x0).

Detected memory leaks!

Dumping objects ->

{5573} normal block at 0x00453DB8, 8 bytes long.

 Data: < > 01 00 00 00 00 00 00 00

{5572} normal block at 0x00453D68, 20 bytes long.

 Data: <D]NU =E > 44 5D 4E 55 CD CD CD CD 02 00 00 00 B8 3D 45 00

{5571} normal block at 0x00453C18, 4 bytes long.

 Data: <X NU> 58 06 4E 55

(...)

These are not actual memory leaks, but internal resources of AVL.dll, which are not yet released when the
memory leaks check is being run. Because there are many such allocated blocks reported, the actual memory
leaks in your program can pass unnoticed.

Solution: Delayed Loading of AVL.dllSolution: Delayed Loading of AVL.dll

To avoid these false positives, AVL.dll should be configured to be delay loaded. This can be done in the
Project Properties, under
Configuration Properties » Linker » InputConfiguration Properties » Linker » Input:

Further ConsequencesFurther Consequences

With this configuration, your program will not try to load AVL.dll until it uses the first function from
Aurora Vision Library. This will be also connected with license checking.

https://msdn.microsoft.com/en-us/library/x98tx3cf.aspx
https://docs.adaptive-vision.com/5.6/avl/getting_started/ProjectConfiguration.html

The program will stop if AVL.dll is missing: if AVL.dll was not delay loaded, this would happen at start
time (the program would refuse to run). This allows the program to work without AVL.dll, and use it only
when it is available. The availability of AVL.dll can be checked beforehand, using LoadLibrary or
LoadLibraryEx functions.

https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibraryexa

ATL Data Types VisualizersATL Data Types Visualizers

Data VisualizersData Visualizers

Data visualizers present data during the debugging session in a human-friendly form. Microsoft Visual
Studio allows users to write custom visualizers for C++ data. Aurora Vision Library is shipped with a set
of visualizers for the most frequently used ATL data types: atl::String, atl::Array, atl::Conditional and
atl::Optional.

Visualizers are automatically installed during installation of Aurora Vision Library and are ready to use,
but they are also available at atl_visualizers subdirectory of Aurora Vision Library installation path.

For more information about visualizers, please refer to the MSDN.

Example ATL data visualizationExample ATL data visualization

Please see the example variables definition below and their visualization without and with visualizers.

atl::String str = L"Hello world";

atl::Conditional nil = atl::NIL;

atl::Conditional conditionalFive = 5;

atl::Array array(3, 5);

Data preview without ATL visualizers installed:

The same data presented using AVL visualizers:

Image Watch extensionImage Watch extension

For Microsoft Visual Studio 2015, 2017 and 2019 an extension Image Watch is available. Image Watch allows
to display images during debugging sessions in window similar to "Locals" or "Watch". To make Image Watch
work correctly with avl::Image type, Aurora Vision Library installer provides avl::Image visualizer for
Image Watch. If one have Image Watch extension and AVL installed, preview of images can be enabled by
choosing "View->Other Windows->Image Watch" from Microsoft Visual Studio menu.

avl::Image description for Image Watch extension is included in atl.natvis file, which is stored in
atl_visualizers folder in Aurora Vision Library installation directory. atl.natvis file is installed
automatically during Aurora Vision Library installation.

When program is paused during debug session, all variables of type avl::Image can be displayed in Image
Watch window, as shown below:

https://msdn.microsoft.com/en-us/library/zayyhzts.aspx

Image displayed inside Image Watch can be zoomed. When the close-up is large enough, decimal values of
pixels' channel will be displayed. Hexadecimal values can be displayed instead, if appropriate option from
context menu is selected.

Image Watch is quite powerful tool - one can copy address of given pixel, ignore alpha channel and much
more. All options are described in its documentation, which is accessible from the Image Watch site at:

ImageWatch 2019 - for Microsoft Visual Studio 2019

ImageWatch 2017 - for Microsoft Visual Studio 2017

ImageWatch - for older versions of Microsoft Visual Studio

https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch2019
https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch2017
https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch

Optimizing Image Analysis for SpeedOptimizing Image Analysis for Speed

General RulesGeneral Rules

Rule #1: Do not compute what you do not need.Rule #1: Do not compute what you do not need.

Use image resolution well fitted to the task. The higher the resolution, the slower the processing.

Use the inRoiinRoi input of image processing functions to compute only the pixels that are needed in
further processing steps.

If several image processing operations occur in sequence in a confined region then it might be better
to use CropImage at first.

Do not overuse images of types other than UInt8 (8-bit).

Do not use multi-channel images, when there is no color information being processed.

If some computations can be done only once, move them before the main program loop, or even to a
separate function.

Rule #2: Prefer simple solutions.Rule #2: Prefer simple solutions.

Do not use Template Matching if more simple techniques as Blob Analysis or 1D Edge Detection would
suffice.

Prefer pixel-precise image analysis techniques (Region Analysis) and the Nearest Neighbour (instead of
Bilinear) image interpolation.

Consider extracting higher level information early in the program 3 for example it is much faster to
process Regions than Images.

Rule #3: Mind the influence of the user interface.Rule #3: Mind the influence of the user interface.

Note that displaying data in the user interface takes much time, regardless of the UI library used.

Mind the Diagnostic Mode. Turn it off whenever you need to test speed. Diagnostic Mode can be turn off
or on by EnableAvlDiagnosticOutputs function. One can check, if Diagnostic Mode is turned on by
GetAvlDiagnosticOutputsEnabled function.

Before optimizing the program, make sure that you know what really needs optimizing. Measure execution
time or use a profiler.

Common Optimization TipsCommon Optimization Tips

Apart from the above general rules, there are also some common optimization tips related to specific
functions and techniques. Here is a check-list:

Template Matching: Prefer high pyramid levels, i.e. leave the inMaxPyramidLevelinMaxPyramidLevel set to atl::NIL, or
to a high value like between 4 and 6.

Template Matching: Prefer inEdgePolarityModeinEdgePolarityMode set not to Ignore and inEdgeNoiseLevelinEdgeNoiseLevel set to Low.

Template Matching: Use as high values of the inMinScoreinMinScore input as possible.

Template Matching: If you process high-resolution images, consider setting the inMinPyramidLevelinMinPyramidLevel to
1 or even 2.

Template Matching: When creating template matching models, try to limit the range of angles with the
inMinAngleinMinAngle and inMaxAngleinMaxAngle inputs.

Template Matching: Consider limiting inSearchRegioninSearchRegion. It might be set manually, but sometimes it also
helps to use Region Analysis techniques before Template Matching.

Do not use these functions in the main program loop: CreateEdgeModel1, CreateGrayModel, TrainOcr_MLP,
TrainOcr_SVM.

If you always transform images in the same way, consider functions from the Image Spatial Transforms
Maps category instead of the ones from Image Spatial Transforms.

Do not use image local transforms with arbitrary shaped kernels: DilateImage_AnyKernel,
ErodeImage_AnyKernel, SmoothImage_Mean_AnyKernel. Consider the alternatives without the "_AnyKernel"
suffix.

SmoothImage_Median can be particularly slow. Use Gaussian or Mean smoothing instead, if possible.

Library-specific OptimizationsLibrary-specific Optimizations

There are some optimization techniques that are available only in Aurora Vision Library and not in Aurora
Vision Studio. These are:

In-Place Data ProcessingIn-Place Data Processing

See: In-Place Data Processing.

Re-use of Image MemoryRe-use of Image Memory

Most image processing functions allocate memory for the output images internally. However, if the same
object is provided in consecutive iterations and the dimensions of the images do not change, then the
memory can be re-used without re-allocation. This is very important for the performance considerations,
because re-allocation takes time which is not only significant, but also non-deterministic. Thus, it is
highly advisable to move the image variable definition before the loop it is computed in:

https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImage.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Image.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/TemplateMatching.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/1DEdgeDetection.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Image.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/EnableAvlDiagnosticOutputs.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel1.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateGrayModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/DilateImage_AnyKernel.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/ErodeImage_AnyKernel.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Mean_AnyKernel.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Median.html
https://docs.adaptive-vision.com/5.6/avl/introduction/ProgrammingConventions.html#inplace

// Slow code

while (...)

{

 Image image2;

 ThresholdImage(image1, atl::NIL, 128.0f, atl::NIL, 0.0f, image2);

}

// Fast code

Image image2;

while (...)

{

 ThresholdImage(image1, atl::NIL, 128.0f, atl::NIL, 0.0f, image2);

}

// Fast code (also in the first iteration)

Image image2(752, 480, PlainType::UInt8, 1, atl::NIL); // memory pre-allocation (dimensions must be known)

while (...)

{

 ThresholdImage(image1, atl::NIL, 128.0f, atl::NIL, 0.0f, image2);

}

Skipping Background InitializationSkipping Background Initialization

Almost all image processing functions of Aurora Vision Library have an optional inRoiinRoi parameter, which
defines a region-of-interest. Outside this region the output pixels are initialized with zeros. Sometimes,
when the rois are very small, the initialization might take significant time. If this is an internal
operation and the consecutive operations do not read that memory, the initialization can be skipped by
setting IMAGE_DIRTY_BACKGROUND flag in the output image. For example, this is how dynamic thresholding is
implemented internally in AVL, where the out-of-roi pixels of the blurredblurred image are not meaningful:

Image blurred;

blurred.AddFlags(IMAGE_DIRTY_BACKGROUND);

SmoothImage_Mean(inImage, inRoi, inSourceRoi, atl::NIL, KernelShape::Box, radiusX, radiusY, blurred);

ThresholdImage_Relative(inImage, inRoi, blurred, inMinRelativeValue, inMaxRelativeValue, inFuzziness, outMonoImage);

Library InitializationLibrary Initialization

Before you call any AVL function it is recommended to call the InitLibrary function first. This function
is responsible for precomputing library's global data. If it is not used explicitly, it will be called
within the first invocation of any other AVL function, taking some additional time.

Configuring Parallel ComputingConfiguring Parallel Computing

The functions of Aurora Vision Library internally use multiple threads to utilize the full power of multi-
core processors. By default they use as many threads as there are physical processors. This is the best
setting for majority of applications, but in some cases another number of threads might result in faster
execution. If you need maximum performance, it is advisable to experiment with the
ControlParallelComputing function with both higher and lower number of threads. In particular:

If the number of threads is higherhigher than the number of physical processors, then it is possible to
utilize the Hyper-Threading technology.

If the number of threads is lowerlower than the number of physical processors (e.g. 3 threads on a quad-
core machine), then the system has at least one core available for background threads (like image
acquisition, GUI or computations performed by other processes), which may improve its responsiveness.

Configuring Image Memory PoolsConfiguring Image Memory Pools

Among significant factors affecting function performance is memory allocation. Most of the functions
available in Aurora Vision Library re-use their memory buffers between consecutive iterations which is
highly beneficial for their performance. Some functions, however, still allocate temporary image buffers,
because doing otherwise would make them less convenient in use. To overcome this limitation, there is the
function ControlImageMemoryPools which can turn on a custom memory allocator for temporary images.

There is also a way to pre-allocate image memory before first iteration of the program starts. For this
purpose use the InspectImageMemoryPools function at the end of the program, and 3 after a the program is
executed 3 copy its outPoolSizesoutPoolSizes value to the input of a ChargeImageMemoryPools function executed at the
beginning. In some cases this will improve performance of the first iteration of program.

Using GPGPU/OpenCL ComputingUsing GPGPU/OpenCL Computing

Some functions of Aurora Vision Library allow to move computations to an OpenCL capable device, like a
graphics card, in order to speed up execution. After proper initialization, OpenCL processing is performed
completely automatically by suitable functions without changing their use pattern. Refer to "Hardware
Acceleration" section of the function documentation to find which functions support OpenCL processing and
what are their requirements. Be aware that the resulting performance after switching to an OpenCL device
may vary and may not always be a significant improvement relative to CPU processing. Actual performance of
the functions must always be verified on the target system by proper measurements.

https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/InitLibrary.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/ControlParallelComputing.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/ControlImageMemoryPools.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/InspectImageMemoryPools.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/ChargeImageMemoryPools.html

To use OpenCL processing in Aurora Vision Library the following is required:

a processing device installed in the target system supporting OpenCL C language in version 1.1 or
greater,

a proper and up-to-date device driver installed in the system,

a proper OpenCL runtime software provided by its vendor.

OpenCL processing is supported for example in the following functions: RgbToHsi, HsiToRgb,
ImageCorrelationImage, DilateImage_AnyKernel.

To enable OpenCL processing in functions an AvsFilter_InitGPUProcessing function must be executed at the
beginning of a program. Please refer to that function documentation for further information.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageColorSpaces/RgbToHsi.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageColorSpaces/HsiToRgb.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageMetrics/ImageCorrelationImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/DilateImage_AnyKernel.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/AvsFilter_InitGPUProcessing.html

Deep Learning Training APIDeep Learning Training API

Note:Note: This article is related to the C++ Deep Learning API for Feature Detection and Anomaly Detection
techniques in 5.6 version only.

Table of contents:

1. Overview

2. Namespaces

3. Classes and Types

4. Functions

ParseConfigFromFile

Configure

StartTraining

SaveModel

LoadModel

GetModelStateFilePath & GetModelWeaverFilePath

InferAndGrade

5. Handling Events

6. Usage Example

7. JSON Configuration Example

8. Best Practices

9. Limitations and Notes

OverviewOverview

The Deep Learning API provides a comprehensive framework for training and deploying Deep Learning models,
focused on feature detection tasks. It offers an object-oriented interface that simplifies the
complexities of configuring and managing Deep Learning operations. Whole API declaration is located in
Api.h file. under avl namespace.

NamespacesNamespaces

avl: Main namespace containing all public-facing classes and types.

Classes and TypesClasses and Types

avl::DetectFeaturesTrainingavl::DetectFeaturesTraining

This is the primary class users should interact with for feature detection training. It is derived from
TrainingBase and provides specialized methods and properties for configuring and managing feature
detection tasks.

ConstructorsConstructors

DetectFeaturesTraining();

explicit DetectFeaturesTraining(const atl::String& url);

Configuration MethodsConfiguration Methods

Training configuration can be performed in two ways:

1. Via Set Methods:Via Set Methods: Configuration can be done using methods like SetDevice, SetNetworkDepth, and other
Set* methods. If a specific Set* method is not called, the default value will be used.

2. Via JSON File:Via JSON File: Use the ParseConfigFromFile method to load configuration from a JSON file.

EnumsEnums

SetType: Specifies the dataset role (Train, Valid, Test, Unknown).

DeviceType: Defines the hardware device for training (CUDA, CPU).

ModelTypeId: Identifies the model type (e.g., DetectFeatures, AnomalyDetection2SimilarityBased).

FunctionsFunctions

ParseConfigFromFileParseConfigFromFile

Loads configuration from a JSON file.

void ParseConfigFromFile(const atl::String& jsonConfigFilePath);

Example of JSON file configuration below.

StartTrainingStartTraining

Begins the training process.

void StartTraining();

SaveModelSaveModel

Saves the trained model to disk in two formats:

A model state file (.pte) for internal use and training continuation

A Weaver model file (.avdlmodel) for deployment in applications

Method SignaturesMethod Signatures

void SaveModel(const atl::Optional<atl::String>& modelDirectoryPath = atl::NIL, const bool overwritePreviousModel =

false);

void SaveModel(const char* modelDirectoryPath, const bool overwritePreviousModel = false);

ParametersParameters

modelDirectoryPath: Optional path to a directory where model files will be saved. If not provided
(default), models are saved in the default directory: [current working directory]/Model/models/

overwritePreviousModel: When set to true, any existing model files at the destination will be
overwritten. When false (default), and model files exist, an error will be raised.

Helper MethodsHelper Methods

After saving, you can retrieve the exact paths to the saved model files using:

GetModelStateFilePath(): Returns the path to the .pte model state file

GetModelWeaverFilePath(): Returns the path to the .avdlmodel Weaver model file

Usage ExamplesUsage Examples

// 1. Save to default location:

training.SaveModel();

// 2. Save to default location and overwrite existing files:

training.SaveModel(atl::NIL, true);

// 3. Save to custom location:

training.SaveModel("C:/My/Models/Path");

// 4. Save to custom location and overwrite existing files:

training.SaveModel("C:/My/Models/Path", true);

// 5. Get saved file paths:

std::cout << "Model State (.pte) saved to: " << training.GetModelStateFilePath().CStr8() << std::endl;

std::cout << "Weaver Model (.avdlmodel) saved to: " << training.GetModelWeaverFilePath().CStr8() << std::endl;

LoadModelLoadModel

Loads a previously saved model state (.pte) file for inference.

Method SignaturesMethod Signatures

void LoadModel(const atl::String& modelFilePath);

void LoadModel(const char* modelFilePath);

ParametersParameters

modelFilePath: Path to a model state file (.pte) to load. The method will load the specified model
file for inference operations.

FunctionalityFunctionality

Loading a model allows you to:

Perform inference on new images using a trained model

Usage ExamplesUsage Examples

// 1. Load a specific model file:

training.LoadModel("C:/My/Models/Path/model.pte");

// 2. Load using the path from a previous save operation (PTE file):

training.SaveModel(); // Save first

training.LoadModel(training.GetModelStateFilePath()); // Load the saved model

Important NotesImportant Notes

This method loads only the model state (.pte) file used for training and inference within this API

The Weaver model (.avdlmodel) files created by SaveModel() are for deployment in production
applications

After loading, the model is immediately ready for inference with InferAndGrade()

GetModelStateFilePath & GetModelWeaverFilePathGetModelStateFilePath & GetModelWeaverFilePath

Helper methods to retrieve the paths of saved model files.

Method SignaturesMethod Signatures

atl::String GetModelStateFilePath();

atl::String GetModelWeaverFilePath();

Return ValuesReturn Values

GetModelStateFilePath(): Returns the full path to the saved model state file (.pte)

GetModelWeaverFilePath(): Returns the full path to the saved Weaver model file (.avdlmodel)

UsageUsage

These methods can be called only after SaveModel()after SaveModel() to get the exact file paths where the models were
saved:

training.SaveModel("./MyModels");

std::cout << "PTE model saved to: " << training.GetModelStateFilePath().CStr8() << std::endl;

std::cout << "Weaver model saved to: " << training.GetModelWeaverFilePath().CStr8() << std::endl;

InferAndGradeInferAndGrade

Performs inference and grades the results. If the InferResultReceived method is overridden, it will be
utilized during the inference process.

void InferAndGrade(

 const atl::String& imageFilePath,

 const Annotation& annotation,

 const atl::Optional<avl::Region>& roi = atl::NIL,

 const atl::Optional<atl::Array<atl::String>>& setNames = atl::NIL);

ParametersParameters

imageFilePath: Path to the image for inference.

annotation: Annotation with class name (and optional region) used for grading or context.

roi (optional): Region of interest. When omitted or atl::NIL, the full image is used.

setNames (optional): Logical grouping / tag list for evaluation summary (e.g. custom test subsets).

Handling EventsHandling Events

To communicate with the user during training and inference, several events are available:

TrainingProgressReceived(double progress): Called to update progress during training.

InferResultReceived(const atl::Array<avl::Image>&): Invoked when inference results are available.

Usage ExampleUsage Example

Below is an example demonstrating how to use the API for training a feature detection model:

#include "Api.h"

#include <iostream>

using namespace avl;

class MyTraining : public DetectFeaturesTraining

{

public:

 MyTraining()

 {

 }

 void TrainingProgressReceived(double progress) override

 {

 std::cout << "Progress: " << progress << std::endl;

 }

 void InferResultReceived(const atl::Array<avl::Image>& inferResultImages) override

 {

 (void)inferResultImages;

 // for (const auto& inferResultImage : inferResultImages)

 // std::cout << "InferResult: " << "Width: " << inferResultImage.Width() <<, " Height: " <<

inferResultImage.Height() << std::endl;

 }

};

int main()

{

 MyTraining training;

 // Training dataset

 auto myTrainingSamples = atl::Array<atl::String>();

 myTrainingSamples.PushBack("Images/train/010.png");

 myTrainingSamples.PushBack("Images/train/011.png");

 myTrainingSamples.PushBack("Images/train/012.png");

 // Validation dataset

 auto myValidationSamples = atl::Array<atl::String>();

 myValidationSamples.PushBack("Images/valid/020.png");

 myValidationSamples.PushBack("Images/valid/021.png");

 myValidationSamples.PushBack("Images/valid/022.png");

 // Test dataset

 auto myTestSamples = atl::Array<atl::String>();

 myTestSamples.PushBack("Images/test/140.png");

 myTestSamples.PushBack("Images/test/141.png");

 myTestSamples.PushBack("Images/test/142.png");

 // Set names for samples used for infer and grade

 auto mySetNames = atl::Array<atl::String>();

 mySetNames.PushBack("my test set 1");

 mySetNames.PushBack("my test set 2");

 // Create a simple annotation mask for the training samples.

 atl::String myClassName = "thread";

 const int width = 648; // Example width and height, should match your training images

 const int height = 486;

 avl::Region myRegion(width, height);

 for (int y = height / 4; y < (height / 4 + height / 2); ++y)

 myRegion.Add(width / 4, y, (width / 4 + width / 2));

 auto myAnnotation = Annotation(myClassName, myRegion);

 // Set training configuration

 // MANUALLY:

 training.SetNetworkDepth(3);

 training.SetIterations(1);

 training.SetDevice(DeviceType::CUDA);

 training.SetToGrayscale(true);

 training.SetAugNoise(5.5);

 // training.SetClassNames(myClassName); //Optional

 // Or from file:

 // training.ParseConfigFromFile("detect_features_config.json");

 // OPTIONAL:

 // training.Configure(); // Optional

 // training.GetConfig(); // Call `training.Configure();` before `training.GetConfig()` otherwise it will use default

config

 for (const auto& sample : myTrainingSamples)

 training.SetSample(sample, myAnnotation, SetType::Train);

 for (const auto& sample : myValidationSamples)

 training.SetSample(sample, myAnnotation, SetType::Valid);

 training.StartTraining();

 training.SaveModel();

 std::cout << "Model State (.pte) saved into file: " << training.GetModelStateFilePath().CStr8() << std::endl;

 std::cout << "Model Weaver (.avdlmodel) saved into file: " << training.GetModelWeaverFilePath().CStr8() << std::endl;

 // Load the model state for inference (use .pte file, not .avdlmodel)

 training.LoadModel(training.GetModelStateFilePath());

 for (const auto& sample : myTestSamples)

 training.InferAndGrade(sample, myAnnotation, atl::NIL, mySetNames);

 return 0;

}

JSON Configuration ExampleJSON Configuration Example

Below is an example of JSON Configuration File for a feature detection model:

{

 "device": "cuda",

 "device_id": 0,

 "is_continuation": false,

 "network_depth": 3,

 "iterations": 2,

 "min_number_of_tiles": 6,

 "need_to_convert_samples": false,

 "stop.training_time_s": 0,

 "stop.validation_value": 0.0,

 "stop.stagnant_iterations": 0,

 "feature_size": 96,

 "aug.rotation": 0.0,

 "aug.scale.min": 1.0,

 "aug.scale.max": 1.0,

 "aug.shear.vertical": 0.0,

 "aug.shear.horizontal": 0.0,

 "aug.flip.vertical": false,

 "aug.flip.horizontal": false,

 "aug.noise": 2.0,

 "aug.blur": 0,

 "aug.luminance": 0.04,

 "aug.contrast": 0.0,

 "to_grayscale": false,

 "downsample": 2,

 "is_mega_tiling": false,

 "mega_tile_size": 128,

 "class_names": "thread",

 "adv.class_names_sep": ";"

}

Best PracticesBest Practices

Use DetectFeaturesTraining for feature detection tasks instead of directly using TrainingBase.

Extend DetectFeaturesTraining for custom behavior during training.

Ensure balanced datasets for training and validation.

Use callback methods to monitor training progress.

Limitations and NotesLimitations and Notes

The ExportQuantizedModel method is not supported for DetectFeaturesTraining.

Configuration can be done through property setters or by loading a JSON configuration file.

SaveModel() creates two files: a .pte file for training/inference and a .avdlmodel file for
deployment.

LoadModel() only loads .pte files for inference operations within this API.

Weaver model files (.avdlmodel) are intended for deployment in production applications, not for
loading back into the training API.

Provide an atl::Optional<avl::Region> ROI to limit inference processing area; pass atl::NIL (or omit
parameter) to use the full image.

An Annotation without a region is valid for tasks that don't require pixel masks.

This article is valid for version 5.6.1

©2007-2025 Aurora Vision

https://www.adaptive-vision.com/

	Aurora Vision Library 5.6
	Technical Issues
	Interfacing with Other Libraries
	Example: Converting Between avl::Image and OpenCV Mat
	Example: avl::Image from pointer to image data
	Displaying Images Directly on WinAPI/MFC Device Context (HDC)
	Loading Aurora Vision Studio Files (AVDATA)
	Working with GenICam GenTL Devices
	Introduction
	Basic Usage
	Advanced Usage
	Additional Requirements
	Processing Images in Worker Thread
	Introduction to the Problem
	Example Application and Image Buffer Synchronization
	Notifications about Image Ready to Display
	Issues of Multithreading
	Troubleshooting
	Problems with Building
	error LNK2019: unresolved external symbol _LoadImageA referenced in function error C2039: 'LoadImageA' : is not a member of 'avl'
	error LNK1123: failure during conversion to COFF: file invalid or corrupt
	Exceptions Thrown in Run Time
	Exception from the avl namespace is thrown
	High CPU Usage When Running AVL Based Image Processing
	Memory Leak Detection in Microsoft Visual Studio
	False Positives of Memory Leaks in AVL.dll
	Solution: Delayed Loading of AVL.dll
	Further Consequences
	ATL Data Types Visualizers
	Data Visualizers
	Example ATL data visualization
	Image Watch extension
	Optimizing Image Analysis for Speed
	General Rules
	Common Optimization Tips
	Library-specific Optimizations
	In-Place Data Processing
	Re-use of Image Memory
	Skipping Background Initialization
	Library Initialization
	Configuring Parallel Computing
	Configuring Image Memory Pools
	Using GPGPU/OpenCL Computing
	Deep Learning Training API
	Overview
	Namespaces
	Classes and Types
	avl::DetectFeaturesTraining
	Constructors
	Configuration Methods
	Enums
	Functions
	ParseConfigFromFile
	StartTraining
	SaveModel
	Method Signatures
	Parameters
	Helper Methods
	Usage Examples
	LoadModel
	Method Signatures
	Parameters
	Functionality
	Usage Examples
	Important Notes
	GetModelStateFilePath & GetModelWeaverFilePath
	Method Signatures
	Return Values
	Usage
	InferAndGrade
	Parameters
	Handling Events
	Usage Example
	JSON Configuration Example
	Best Practices
	Limitations and Notes

